If it's not what You are looking for type in the equation solver your own equation and let us solve it.
148+96x-16x^2=0
a = -16; b = 96; c = +148;
Δ = b2-4ac
Δ = 962-4·(-16)·148
Δ = 18688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18688}=\sqrt{256*73}=\sqrt{256}*\sqrt{73}=16\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{73}}{2*-16}=\frac{-96-16\sqrt{73}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{73}}{2*-16}=\frac{-96+16\sqrt{73}}{-32} $
| -11=3-2x | | 3x+30/8=x | | 0.5x+0.167=0.75 | | (x–1)(x+2)=10 | | 13x+12=49 | | 13÷6x=7÷5x | | 0.5x+1/6=0.75 | | F=9/8(n-10) | | 22x-23=6(3x-5)+4x+7 | | (3x-17)+(2x-23)=90 | | -2(4x+5)+1=3x-(11x+5) | | -5(3t-2)+4t=3t-7 | | 41+42+x=180 | | 3d÷3=15 | | 2(x+10)=-60 | | 78=48+f | | 3r-14=78 | | 5(14f−8)=2f+4(18f+9) | | 3r=78-14 | | -3r=78-14 | | 34-6(5-x)=0 | | 03x+6=7.5 | | -3r=-78+14 | | -2(5t-2)+7t=8t-8 | | 4c+5=+3 | | 78=42+a | | 112x2-12x+13=0 | | 6(x-1)=2x=10 | | 4x=369 | | x+(x*2/4)=98 | | 7k-7=-22 | | 5k-7=-22 |